Evidence toads may modulate landing preparation without predicting impact time
نویسندگان
چکیده
Within anurans (frogs and toads), cane toads (Bufo marinus) perform particularly controlled landings in which the forelimbs are exclusively used to decelerate and stabilize the body after impact. Here we explore how toads achieve dynamic stability across a wide range of landing conditions. Specifically, we suggest that torques during landing could be reduced by aligning forelimbs with the body's instantaneous velocity vector at impact (impact angle). To test whether toad forelimb orientation varies with landing conditions, we used high-speed video to collect forelimb and body kinematic data from six animals hopping off platforms of different heights (0, 5 and 9 cm). We found that toads do align forelimbs with the impact angle. Further, toads align forelimbs with the instantaneous velocity vector well before landing and then track its changes until touchdown. This suggests that toads may be prepared to land well before they hit the ground rather than preparing for impact at a specific moment, and that they may use a motor control strategy that allows them to perform controlled landings without the need to predict impact time.
منابع مشابه
SYMPOSIUM Biomechanics and Control of Landing in Toads
Synopsis Anything that jumps must land, but unlike during jumping when muscles produce energy to accelerate the body into the air, controlled landing requires muscles to dissipate energy and decelerate the body. Among anurans, toads (genus Bufo) exhibit highly coordinated landing behaviors, using their forelimbs to stabilize the body after touch-down as they lower their hindlimbs to the ground....
متن کاملPre-landing wrist muscle activity in hopping toads.
Coordinated landing requires preparation. Muscles in the limbs important for decelerating the body should be activated prior to impact so that joints may be stiffened and limbs stabilized during landing. Moreover, because landings vary in impact force and timing, muscle recruitment patterns should be modulated accordingly. In toads, which land using their forelimbs, previous work has demonstrat...
متن کاملSensory feedback and coordinating asymmetrical landing in toads.
Coordinated landing requires anticipating the timing and magnitude of impact, which in turn requires sensory input. To better understand how cane toads, well known for coordinated landing, prioritize visual versus vestibular feedback during hopping, we recorded forelimb joint angle patterns and electromyographic data from five animals hopping under two conditions that were designed to force ani...
متن کاملAnticipatory motor patterns limit muscle stretch during landing in toads.
To safely land after a jump or hop, muscles must be actively stretched to dissipate mechanical energy. Muscles that dissipate energy can be damaged if stretched to long lengths. The likelihood of damage may be mitigated by the nervous system, if anticipatory activation of muscles prior to impact alters the muscle's operating length. Anticipatory motor recruitment is well established in landing ...
متن کاملDo toads have a jump on how far they hop? Pre-landing activity timing and intensity in forelimb muscles of hopping Bufo marinus.
During jumping or falling in humans and various other mammals, limb muscles are activated before landing, and the intensity and timing of this pre-landing activity are scaled to the expected impact. In this study, we test whether similarly tuned anticipatory muscle activity is present in hopping cane toads. Toads use their forelimbs for landing, and we analysed pre-landing electromyographic (EM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017